346 research outputs found

    The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Get PDF
    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from 100/wattto100/watt to 125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space

    Superconductor transition temperatures study

    Get PDF
    Compounds having beta tungsten structure exist as solid solutions over composition range of several percent. However, for most of these compounds, relationship between composition and superconducting transition temperature is not known

    Study of transition temperatures in superconductors Quarterly progress report, 11 Jun. - 10 Sep. 1968

    Get PDF
    Superconducting properties of niobium-tin alloy and large single crystal growt

    Ultralight amorphous silicon alloy photovoltaic modules for space applications

    Get PDF
    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications

    Deployable aerospace PV array based on amorphous silicon alloys

    Get PDF
    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs

    Conceptual energy and water recovery system for self-sustained nano membrane toilet

    Get PDF
    With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm3/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9–5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs

    An experimental investigation of the combustion performance of human faeces

    Get PDF
    Poor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions

    A Review of the Properties of Nb3Sn and Their Variation with A15 Composition, Morphology and Strain State

    Get PDF
    This article gives an overview of the available literature on simplified, well defined (quasi-)homogeneous laboratory samples. After more than 50 years of research on superconductivity in Nb3Sn, a significant amount of results are available, but these are scattered over a multitude of publications. Two reviews exist on the basic properties of A15 materials in general, but no specific review for Nb3Sn is available. This article is intended to provide such an overview. It starts with a basic description of the Niobium-Tin intermetallic. After this it maps the influence of Sn content on the the electron-phonon interaction strength and on the field-temperature phase boundary. The literature on the influence of Cu, Ti and Ta additions will then be briefly summarized. This is followed by a review on the effects of grain size and strain. The article is concluded with a summary of the main results.Comment: Invited Topical Review for Superconductor, Science and Technology. Provisionally scheduled for July 200

    Exceptional sperm cooperation in the wood mouse

    Get PDF
    Spermatozoa from a single male will compete for fertilization of ova with spermatozoa from another male when present in the female reproductive tract at the same time. Close genetic relatedness predisposes individuals towards altruism, and as haploid germ cells of an ejaculate will have genotypic similarity of 50%, it is predicted that spermatozoa may display cooperation and altruism to gain an advantage when inter-male sperm competition is intense. We report here the probable altruistic behaviour of spermatozoa in an eutherian mammal. Spermatozoa of the common wood mouse, Apodemus sylvaticus, displayed a unique morphological transformation resulting in cooperation in distinctive aggregations or 'trains' of hundreds or thousands of cells, which significantly increased sperm progressive motility. Eventual dispersal of sperm trains was associated with most of the spermatozoa undergoing a premature acrosome reaction. Cells undergoing an acrosome reaction in aggregations remote from the egg are altruistic in that they help sperm transport to the egg but compromise their own fertilizing ability
    corecore